A Tight Upper Bound on Acquaintance Time of Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tight Upper Bound on Acquaintance Time of Graphs

In this note we confirm a conjecture raised by Benjamini et al. [BST13] on the acquaintance time of graphs, proving that for all graphs G with n vertices it holds that AC(G) = O(n3/2), which is tight up to a multiplicative constant. This is done by proving that for all graphs G with n vertices and maximal degree ∆ it holds that AC(G) ≤ 20∆n. Combining this with the bound AC(G) ≤ O(n2/∆) from [B...

متن کامل

A Tight Upper Bound on the Cover Time for Random Walks on Graphs

We prove that the expected time for a random walk to visit all n vertices of a connected graph is at most 4 27 n 3 + o(n 3).

متن کامل

A Tight Upper Bound on Kolmogorov

The present paper links the concepts of Kolmogorov complexity (in Complexity theory) and Hausdorr dimension (in Fractal geometry) for a class of recursive (computable) !-languages. It is shown that the complexity of an innnite string contained in a 2-deenable set of strings is upper bounded by the Hausdorr dimension of this set and that this upper bound is tight. Moreover, we show that there ar...

متن کامل

A Note on the Acquaintance Time of Random Graphs

In this short note, we prove a conjecture of Benjamini, Shinkar, and Tsur on the acquaintance time AC(G) of a random graph G ∈ G(n, p). It is shown that asymptotically almost surely AC(G) = O(log n/p) for G ∈ G(n, p), provided that pn−log n−log log n→∞ (that is, above the threshold for Hamiltonicity). Moreover, we show a matching lower bound for dense random graphs, which also implies that asym...

متن کامل

A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs

A (2, 1)-total labeling of a graph G is an assignment f from the vertex set V(G) and the edge set E(G) to the set {0, 1, . . . , k} of nonnegative integers such that | f (x) − f (y)| ≥ 2 if x is a vertex and y is an edge incident to x, and | f (x) − f (y)| ≥ 1 if x and y are a pair of adjacent vertices or a pair of adjacent edges, for all x and y in V(G) ∪ E(G). The (2, 1)-total labeling number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2016

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-016-1700-4